If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-14x+13=0
a = 1; b = -14; c = +13;
Δ = b2-4ac
Δ = -142-4·1·13
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-12}{2*1}=\frac{2}{2} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+12}{2*1}=\frac{26}{2} =13 $
| 87+47x=323-12x | | 11-5h=1 | | x2-22x+112=0/ | | 14-35=7t | | 24y=-17y | | 1+2/x-80/6x=3 | | 180=52+(x-13) | | 4x-(6x-20)=-14 | | 12*x+68=0 | | -45+6x=-669+58x | | (5x+3)+(8x+5)=15x-18 | | 2x-6=-41+9x | | –2+4x=8x | | 2x+5=3x^{2}+2x-7 | | (11y+3)+(5y+1)=116 | | 3y+9/2y-3=5/3 | | 9y+15=10y-27 | | 179+30x=14-3x | | 3y+25=180 | | (4y+5)+(5y+7)=147 | | 0.1x-0.1=0.2 | | 0,1x-0,1=0,2 | | x+2x+5=2x+10 | | -72+25x=-72+25x | | 7x-4=12+2x | | 4y+25-15=90 | | (6x+1)+(2x+8)+(7x+6)=180 | | -11x+27=-3x+115 | | 5x-20-50=180 | | 0,25-3(6,3-x)=5(8-0,2x) | | 8x+703=-74-29x | | -x=7-2x |